Stylometry with R

mike.kestemont@gmail.com www.mike-kestemont.org University of Antwerp

NEH Summer Institute, Pittsburgh July 2017

Installing R

- **R** (http://www.r-project.org/)
- Open-source statistical software
- Runs on all major platforms

Sublime 3

- For viewing files today
- If you don't have a good text editor
- (esp. if you are on Windows)
- Install Sublime 3
- Free download

• Install: <u>http://www.sublimetext.com/2</u>

Stylo

- "Stylometry with R"
- https://sites.google.com/site/computationalstylistics/
- Free package for easy stylometric analysis in R
- Graphical user interface (no coding!)

There's no I in team

10Computational01 01Stylistics0101000 11Group011010110

Maciej

Jan

Install Stylo

- Install from within R
- Launch R: double-click icon (e.g. in Applications)
- To download and install, type in the console:
 - install.packages("stylo")
- Every time you restart R, import Stylo:
 - library(stylo)

Download course material

• Download course materials from:

- tinyurl.com/y73tc2es
- Unzip the folder (pitt17)
- Place it e.g. on your Desktop

Medieval French Genres

- Jean Bodel (French poet, late 12th C.)
- Famous quote *Chanson de Saisnes*:

Ne sont que 3 matières à nul homme atandant, De France et de Bretaigne, et de Rome la grant.

- Distinguishes 3 *matières* or "genres":
 - 1. Matière de France (chansons de geste; Charlemagne)
 - 2. Matière de Bretaigne (romans arturiens; King Arthur)
 - 3. *Matière de Rome* (romans antiques; e.g. Troie)

• Question: can we distinguish these using stylometry?

Clustering in Stylo

- Let's do a clustering experiment on our genres
- Create a folder corpus under pitt17/data/ genres/
- Copy all bre_* and fra_* texts to this folder

Run stylo

- Stylo needs to know where our data is. Type in R:
 - setwd("~/Desktop/pitt17/data/genres/")
 - (You can use tab to navigate!)
 - It has to see corpus (and not be inside it!)
- Make sure stylo is loaded:
 - library(stylo)
- Run command:
 - stylo()
- The GUI should load...

Stylo GUI

00	X Stylometry with R: enter analysis parameters					
INPUT & LANGUAGE FE		ATURES	STATISTIC	cs	SAMPLING	OUTPUT
INPUT:	plain text •	xml C	xml (plays)	xml (no titles)) html C	
LANGUAGE:	English C Polish C	English (contr.) C Hungarian C	English (ALL) French	Latin C Italian C	Latin (u/v > u) C Spanish	
	Dutch	German	СІК	Other C		UTF-8
			ОК			

Adjust parameters and hit OK

And you should get a tree...

OK... What happened?

- We represent texts as "bags of words"
- Create a large frequency table:
 - each column = text
 - each row = word
 - each cell = relative frequency

• Check out table_with_frequencies.txt

0	e 🕒 🕒 💼 table_with_frequencies.txt									
P III IN II IN III IN II II										
A	Home	Layo	ut Tables	Charts Sm	artArt Form	ulas Data	Review	• • • • • • • • • • • • • • • • • • • •		
	Edit	1		Font		Alignment		Number		Forma
Ê	🖕 🛃 Fill	•	Calibri (Body)	• 12 • A	A -] ==	abc 🔻 📰 🖓	Wrap Text 🔻 Ge	neral	▼	No
Past	e 🥏 Clea	ur ≖	BIU	· · ·			Merge 🔻 📲	• % • ? ;;	0 .00 ↓ .00 ↓ .00 ↓ Conditiona Formattin	al Bac
	S2	ŧ	🛞 💿 (* fx							
	Α		B	С	D	E	F	G	Н	I
1	bre_cha	rette	bre_graal	bre_graalco	bre_graalcor	bre_tristanb	bre_tristant	bre_yvain	fra_aliscans	fra_asp
2	le		6,21921182	7,19456215	6,55339806	6,69576325	6,70977187	5,52029697	5,1766025	7,7381
3	il		6,052076	5,45550847	4,66221683	5,00319353	4,22105648	5,00538858	5,2139787	3,8564
4	en		4,934905	4,12252825	3,65088997	3,93868427	5,27022081	5,69991618	4,84956083	4,0917
5	et		4,97888811	4,90819209	4,55097087	4,84351714	1,93973405	3,59238415	4,56923939	3,2935
6	de		2,33990148	2,65713277	3,00364078	3,21481797	2,41551787	3,41276494	3,07419174	3,6716
7	que		3,80893737	4,05190678	3,09466019	2,89546519	2,8059046	3,46066339	4,35432629	1,7896
8	а		1,77691766	1,65077684	2,05299353	2,00127741	2,48871538	1,98778589	1,78471314	2,4281
9	je		2,95566502	2,83368644	1,69902913	1,4477326	2,90350128	3,04155191	2,99009531	1,6131
10	avoir		1,77691766	1,40360169	2,18446602	2,05450287	2,18372575	2,74218656	1,53242385	2,5793
11	i		2,7885292	2,6924435	2,52831715	0,52160954	0,59777968	0,37121303	2,89665483	0,6805
12	estre		0,94123856	1,32415254	1,83050162	1,52224824	1,43955106	0,76637528	1,20538217	1,688
13	si		1,76812104	1,43008475	1,56755663	1,69256973	1,06136391	1,02981679	1,9342179	1,0082
14	son		0,89725545	1,0240113	0,95064725	1,45837769	1,1589606	2,02370974	0,97178098	1,5291
15	qui		1,18754398	1,63312147	1,77993528	1,34128167	1,18335977	0,56280685	1,5043917	1,0082
16	ester		1,16995074	1,14759887	1,53721683	1,52224824	1,09796267	1,36510598	1,36423098	1,176
17	vos		1,25791696	1,35063559	1,12257282	1,0112838	1,17116018	1,43695366	1,23341432	0,7981
18	dire		1,12596763	1,34180791	1,0315534	0,88354269	0,97596682	1,05376602	0,76621192	0,8738
19	se		1,12596763	1,14759887	1,09223301	1,20289547	1,11016225	1,44892827	1,36423098	0,8149
20	un		1,14356087	1,06814972	1,15291262	0,89418778	1,02476516	0,50293378	0,77555597	1,2939
21	par		0,80928923	0,71504237	1,00121359	0,68128593	1,28095645	0,85019758	0,72883573	1,0082
22	tot		0.82688248	0.76800847	0.82928803	1.28805621	0.76857387	0.50293378	0.99046907	0.9326

Bag of words?

- We ignore word order, position of word in document, syntax, ...
- Only use word counts
- Relative frequencies

Only use 3,000 words

- Most Frequent Words: MFW
- Better for statistics
- Check out wordlist.txt
- What kind of words are most frequent?

MFW SETTINGS:	Minimum 3000	Maximum 3000
CULLING:	Minimum 0	Maximum 0

Distance matrix

Dist()	Text1	Text2	Text3
Text1	0.0	Dist(Text1, Text2)	Dist(Text1, Text3)
Text2	Dist(Text2, Text1)	0.0	Dist(Text2, Text3)
Text3	Dist(Text3, Text1)	Dist(Text3, Text2)	0.0

Build tree

- Now we build a tree bottom-up
- First, join 2 texts that are most similar
- Combine them in a new node
- Work you way up the three
- Until all texts are joined
- Horizontal axis reflects (dis)similarity

Do it yourself (1)

- 1. Try out different parameters:
 - Vary the number of MFW (under features tab): 30, 50, 1000, 5000, ... (Always update Minimum and Maximum simultaneously!)
 - Vary the distance metric (under statistics tab)
 - Do you get different results? "Better" results?
- Graal, Yvain and Charette always cluster together.
 Can you think of an explanation why?

Do it yourself (2)

- 1. Under the sampling tab, select Normal sampling and insert 3,000 under Sample size.
- 2. Run the analysis again. There are much data points now: can you guess what happened?
- 3. Set the Sample size at an absurd size: e.g. 20,000. Do you get an error? Why?

Unstability

- Cluster Analyses can be unstable (cf. 30 > 31 MFW)
- Very different results for small change in parameters
- Rerun experiment with for MFW: Minimum=50, Maximum=3000, Increment=50
- We now iteratively run cluster analyses for different frequency bands: 50-100 MFW, 100-150 MFW, 150-200, ..., 2900-2950 MFW, 2950-3000 MFW.
- Do you see the tree change in each picture?

Bootstrap Consensus Trees

- Bootstrap Consensus Trees (BCT)
- Gives "summary" of different cluster analyses
- Only visualises nodes on which there is a consensus among the trees (50% majority vote)
- Rerun analysis, but select Consensus Tree (under statistics), but leave Consensus strength to 0.5

Do it yourself (+)

- We have seen that the cluster analyses easily distinguish Jean Bodel's *matière de Bretaigne* and *matière de France* without supervision. But what about the *matière de Rome*? Add the rom_* texts under data to the corpus folder.
- Rerun various cluster analyses on this expanded data set and experiment with the BCT. Experiment with different MFWs and sample sizes. What is the result? Do you get pretty clusters? How do you interpret this? Which two Arthurian texts behave strangely?

Text selection

- Sometimes you don't want to analyse all texts under corpus
- Under features, tick Select files manually
- You will get a dialogue window:
 - (De)select individual texts using Control+Click
 - Select a range of texts using Shift+Click
- Try to run an analysis using only the bre_* and rom_* texts

Do it yourself (1)

- I downloaded the entire oeuvre by Dante Alighieri (1265-1321) from <u>danteonline.it</u>
- (I don't know anything about Dante, and I don't speak Italian)
- Still, analyse his oeuvre: "Distant" Reading!
- Type setwd("pitt17/data/dante") in R to navigate to the correct directory

Do it yourself (2)

- Run various (normal) cluster analyses on Dante's work: try different MFWs. (Don't use sampling yet: No sampling) Do you see a clear clustering of texts?
- Analyze these two clusters using oppose(). Don't forget to create the folders necessary for this: divide the texts in a primary and secondary set. Result? Silly me! Can you too find out why these two clusters are there?
- Add cluster labels followed by "_" in the file names under corpus to sort our the colouring of the cluster plots. Each file should get a title = clustername_title.txt

Do it yourself (3)

- Now analyse <u>only</u> the Italian works using stylo().
- Now run Bootstrap Analysis Trees for various MFWs (adjust Minimum, Maximum and Increment).
- Try out different sample sizes (e.g. 5,000). You can leave out *DettoDAmore*, which is too short. Do you see clusters here? Can you explain them using the internet?
- Which two parts of the *Commedia* are closest to each other?
- Use oppose() to find out which words are typical of Paradiso (in comparison to the other parts).

Spelling variation

- No printing press: manual copying
- Scribes, copyists
- No standard language, spelling
- Regional, personal preferences
- Especially vernacular texts
- Each copy unique

Recognizable?

Ter stont ende ter seluer vren D Tier stont ende ter seluer vren Е F Tlere stont enter seluer vren Tottien stonden en ter uren G Η TEn stonden ende ter seluer vren I Tjerst stont ende tier veren Tyer stont ende tier seluer vren T Ν TJer stont tier seluer vre

Huge issue

- Issue for computational text analysis
- Lemmatize, part-of-speech tag
- Often seen as problem...
- E.g. stemmatology: reconstruction
- But also interesting!
- Study scribal behaviour

Angus McIntosh

- Middle English philology
- Linguistic Atlas of Late Medieval English
- Scribal language
- Interested in modelling scribal behaviour

Hypothesis

- Each scribe has unique 'profile'
- Combination of:
 - Graphetic profile (handwriting)
 - Linguistic profile (language)
- Today focus on language:
 - alt vs. olt (dialect)
 - *tijt* vs. *tyt* (spelling)

3. Chaucer

 Scribal profile in 4 MSS • Chaucer, *Canterbury Tales* Well-studied scribes • Parallel copies of I tale • The Man of Law • Data courtesy of J. Thaisen

Parallel content: focus on linguistic differences

hateful harmN condiciounN of povert with thrist with cold with hungR so counfoundid

ohatefułł harme condicyouN of pouert with thurste witħ colde witħ hungR so coNfounded

O hate full harme condiciouN of pouerte wt thrust wt colde and honger so confounded

[Polish Ministry of Science and Higher Education, project grant no. N104 045 32/4256]

Principal Components Analysis

- (My favourite)
- enter setwd("~/Desktop/pitt17/data/ chaucer")
- Check out corpus folder
- launch stylo():
 - **Use** MFW=500
 - Set method to PCA (corr.) under statistics
 - Normal sampling; size=500 (Sampling)

What do you see? (Does this make sense?)

Do it yourself

- Select a number of different manuscript pairs and triples tick Select files manually and use Control+Click. Can you describe what you see? Where are the samples positioned?
- Use 2 manuscripts. Set PCA flavour=Symbols and steadily decrease the sample size (500, 300, ..., 50,). How small can samples get before the plot gets fuzzy? What does this tell us?

Loadings

- Extremely helpful feature of PCA
- Tells on which specific word differences the PCA is based
- Use 2 manuscripts. Set PCA flavour= Loadings. The loadings will be plotted in dark; the samples in lightgrey. (If difficult to read, lower the MFW=100)
- What is there results? Inspect the original files: do the loadings make sense?

Quartz 2 [*]

PCA flavour= Technical

Principal components

Character n-grams

- Words are not always used in stylometry
- Also character n-grams
- Under features tab:
 - features = chars
 - ngram size = 3
- Make sure to set PCA flavour=Loadings
- Can you guess what character n-grams are?

Hildegard of Bingen

- Influential women writer
- 1098-1179
- Germany
- Divine visions
- "Sybil of the Rhine"

[Wiesbaden, Landesbibliothek, I, fol. Ir.]

Varied oeuvre

- Visions
- Music
- Scientific texts
- Recipes
- Medical treatises
- Letters (pope, emperor, ...)

and the state of t i O oragne parer in magna necellitare fumul nue ignur "evoya oblectumul oblectum re p uerbu rui p de not conthruith plenot quibul indigenul mie placent ribi par quia te decet ut afpier af m not p aduuorum rum ur n deficiar? ? ne nom ruum in nobil obscurrer op upfum nom en um dignare not aduna a ererne de ne rebi placent ur in for ne. osoque amore nuo andeat ar membra alla fimut que fecult in codem The stand stands and s arunn er minæ neællitare hac que fup nof cader of abilinhe entitude et imple internate inte qui se un traine et internet internet et inte

[Dendermonde, St.-Pieters & Paulusabdij, Ms. Cod. 9]

Early 2012

- Sara Moens
- Jeroen Deploige
- Dept. History, UGhent
- Editing two texts
- Collaborate?

Secretaries

- Wrote in Latin...
- But was bad at it!
- No formal training as woman
- Assisted by male secretaries
- Gender issues...
- Dictated

[Hildegard and her 1st secretary Volmar]

Correction grammatical mistakes

(Only form, not content!)

nittot ere Gum o anno or way rria ue abulater ullane deo pri af a cni mi dun

eig gaudui lunuul fut fubminustar. figuificans porentia di qui sup oms é. « qui omil'una tribuit. Sub quo circuli abut fieut curculus mars ugus demonstrat. quia ugus iste fub poreltare priorifexultens. undicialis & fere gehennalis e. adamdicta malge factul nee ulli rei pareit sup qua uulto ui duero cadut. qui mes oftender quod omit que se do oppoput. mcata nigredunt maltaseq, calamutatu uertet. Hameu fol surfu alcendat idemigun undicta di mobultione exercet. cu u fol deor fu descend. ille undiciales plagas igelu & gudme ac ifrigore oftendut. qm quodq, peccatu seu igne. seu frigo ve seu alus quabda plagu sedin modu sun examinat. Et ide

[Ghent, University Library, MS 241]

Two shorter texts...

Visio ad Guibertum missa &

Visio de sancto Martino

- "Attributed" to Hildegard
- Opera omnia...
- But style not typical of her
- Doubts authorship?
- Last secretary....

[MS Brussels, Royal Library, 5527-34, fol. 141v.]

Guibert of Gembloux

- Monk from Brabant
- Hildegard's last secretary
- Fascination St Martin
- Very elaborate style
- "Pushy"

[MS Brussels, Royal Library, 5527-34, fol. 141v.]

Stylometry?

When you correct [this text], keep to this rule: that [...] you apply your skill only to make corrections where the order or the rules of correct Latin are violated. Or if you prefer – and this is something I have conceded in this letter beyond my normal practice – you need not hesitate to clothe the whole sequence of the vision in a more becoming garment of speech, preserving the true sense

[Visio de St. Martino, trans. Newman, 1987, p. 23]

Corpus

- Corpus Christianorum (Brepols)
- Complete materials
- Epistolaria
- Hildegard, Guibert
- Bernard of Clairvaux (1090-1153)
- 3x +100k tokens

Do it yourself

- Check out folder pitt17/data/hildegard:
 - B_ep.txt = Letters from Bernard of Clairvaux
 - B_Mart.txt = Sermon about St. Martin by Bernard
 - D_Mart.txt = Dubious
 - D_Missa.txt = Dubious
 - G_ep.txt = Letters by Guibert
 - H_epG.txt = Letters by Hildegard, with Guibert
 - H_epNG.txt = Letters by Hildegard, before Guibert
- All texts lemmatised

Wordlist

- **Restrictive wordlist** wordlist_master.txt
- Non-function words removed via hashtag (#)
- Copy wordlist_master.txt and rename copy to wordlist.txt
- **Restrict analysis: tick** Use existing wordlist
- Stylo will look for wordlist.txt and use only these words

Run PCA

- Sample size = 10,000
- MFW = 65
- Select PCA
- PCA Flavour = Technical
- Select B_ep.txt, G_ep.txt, H_epNG.txt
- Existing wordlist + Select Texts Manually
- Same plot?

Test PCA

[ss=10,000; 65 MFW; content words 'culled']

Play with Sample size

[ss=1,000]

Boxplot

• Plot differences in MFW **Use** oppose(): • primary_set = G_ep.txt • secondary set = B ep.txt + H ep.txt • Also try: • in for Hildegard • non for Bernard

"Anonymous" text?

[ss=3,706; Bernard's Sermo in festo sancti Martini as "anonymous test case";]

Add text

Bernard's Sermo in festo sancti Martini
"Anonymous" test case
Add B_Mart.txt
Set Sample size to 3,500 (length of B_Mart.txt)
Attribution?

Principal Components Analysis

Bigger picture

te

vectare concedat gen inquian Tore quarte rughe que tub; um feve encluar fola & fup et te una rum aduenir eriam lequi pauri uncentar up parent bu dupmant un vegno dancant fup multa conth ruar. Epla one hildegardig magit cenoby fa Roberapungun de excellina bi avaramon munt; venevenda beaufinn pourifices marcun memoria. venore excolentib; . buldegandes the no ab marnatone du un i o. v Lever cum infia octanat quastar ter marcine drune concemptation מחדווות זהו ותנותכנים טסדבים שווולמו

Concluding experiment

• Use all texts

- Sample size = 3,000
- **Don't forget:** Existing wordlist
- PCA Flavour = Classic
- Stable? Try out different settings!

Synergy Hypothesis

- Pennebaker (e.g. 2011)
- The Secret Life of Pronouns
- Federalist papers and Beatles songs
- Collaborative writing style?
- "unlike either of one of the styles that the collaborating authors would produce on their own"
- Practical and theoretical relevance

"Hollywood version"? Online documentary vimeo.com/70881172

References

- •Argamon S. (2008). Interpreting Burrows's Delta: Geometric and Probabilistic Foundations, Literary and Linguistic Computing, 23(2): 131–47.
- •Burrows, J. (2002). 'Delta': A Measure of Stylistic Difference and a Guide to Likely Authorship, Literary and Linguistic Computing, 17(3): 267–87.
- •Chrupała, G. et al. (2008). Learning Morphology with Morfette. In Proceedings of LREC 2008. Marrakech, Morocco: pp. 2362–67.
- •Eder, M., Kestemont, M. and Rybicki, J. (2013). Stylometry with R:A Suite of Tools. In Digital Humanities 2013. Conference Abstracts. University of Nebraska-Lincoln, pp. 487–89.
- •Ferrante, J. (1998). Scribe quae vides et audis. Hildegard, Her Language, and Her Secretaries. In Townsend, D. et al. (eds), The Tongue of the Fathers. Gender and Ideology in Twelfth-Century Latin. Philadelphia: University of Pennsylvania Press, pp. 102–35.
- •Kestemont, M., Daelemans, W. and De Pauw, G. (2010). Weigh your Words Memory-Based Lemmatization for Middle Dutch, Literary and Linguistic Computing, 25(3): 287–301.
- •Newman, B. (1987). Sister of Wisdom. St. Hildegard's Theology of the Feminine. LA: University of California Press.
- •Passarotti, M. and Dell'Orletta, F. (2010). Improvements in Parsing the Index Thomisticus Treebank. Revision, Combination and a Feature Model for Medieval Latin. In Calzolari, N. et al. (eds), Proceedings of LREC 2010. Valetta, Malta, pp. 1694-71.
- Pennebaker, J. (2011). The Secret Life of Pronouns. What our Words Say About Us. NY: Bloomsbury.
 Petrie, K., Pennebaker, J. and Sivertsen, B. (2008). Things We Said Today: A Linguistic Analysis of the Beatles, Psychology of Aesthetics, Creativity, and the Arts, 2(4), 197–202.