

Transformations and the MVC
pattern

Pittsburgh-NEH-institute 2022
 day 1 session 2 slot 3

How do I transform, what do I
transform to?

● Think of this from the perspective of your own
project needs

MVC pattern?
● MVC is an architectural pattern. Cf design

pattern.
– So just like any pattern it will be loose in the ends

What?
● MVC pattern divides the application into three

logical parts: Model, View, and Controller.
hence its acronym name.

● Usually used to describe graphical user
interface, nowadays also used for mobile and
web apps.
–

What does the MVC pattern try to
solve?

● Let the user control a large and complex data
set

● The three parts have their own specific
responsibilities
– This avoids repetition
– Helps with creating solid structures

Part by part: The model
● The model

– Maintains the data. E.g. connects with database
– Responds to model requests (for data)

Part by part: The view
● The view

– Represents data
– Creates the user interface

Part by part: The controller
● The controller

– Tells the model what to do based on the requests
from the view

– Does not handle data logic

Positive effects
● When business logic is separated form the user

interface
– Components are more easily reusable
– Components can be made, deployed, maintained

and tested independently
● -> TDD, semantic URLs

Negative effects
● Not suitable for small applications (still good for

planning)
● High complexity
● Inefficiency of data access in view

Planning tool
● Thinking about programming and organize your files

– -> translate your ideas into code
● Interaction with other code gets easier
● Returning to the code gets easier as well
● We will certainly return to this later (as some of the

pointers indicate)

Alternative approaches
● Microservices / RESTful APIs (no view just

JSON data transformed)
● Middleware, mediator, and command patterns

Transformation
● After picking up MVC, at least as a planning

tool, we return to the transformation part
– How do I transform?
– What do I transform to?
– Let us start with the latter

What do I transform to?
● Pick a purpose

– to view:
● on screen, html
● for reading offline, ePub, PDF

– data for components:
● JSON
● Other XML

– other uses:
● Suitable format

– transformation from

What are the data needs for each
use of transformed data?

● this guides the resulting format and what features
are in there
– Sometimes you need further information for a use than

what is available in your data
● can it be computed from your data?
● Do you need to add other sources?
● Can annotations be added to current sources to address the

need?

How do I transform?
● extract from data sources (resources)
● combine several sources
● compute (into runtime data or on the fly?)
● pick standard formats (yes, really, we will come back to this)

– enables possible reuse
– gives better understanding by more people
– certainly make it more sustainable

How do I transform?
● With what do I transform?

– Source is text or encoded text: Xquery, XSLT, explicit
API calls to services

– source is not (written) text:
● if images of text: OCR and encode minimally to treat it as

similar text sources
● If images, audio, video: convert from surce to runtime/use

formats

Testing
● To be safe you should make tests for the

transformations too

Continuation follows ...
● Hopefully some food for thought on what to

think about for your own project and the
resources

Transformations and the MVC
pattern

Pittsburgh-NEH-institute 2022
 day 1 session 2 slot 3

How do I transform, what do I
transform to?

● Think of this from the perspective of your own
project needs

MVC pattern?
● MVC is an architectural pattern. Cf design

pattern.
– So just like any pattern it will be loose in the ends

What?
● MVC pattern divides the application into three

logical parts: Model, View, and Controller.
hence its acronym name.

● Usually used to describe graphical user
interface, nowadays also used for mobile and
web apps.
–

What does the MVC pattern try to
solve?

● Let the user control a large and complex data
set

● The three parts have their own specific
responsibilities
– This avoids repetition
– Helps with creating solid structures

Part by part: The model
● The model

– Maintains the data. E.g. connects with database
– Responds to model requests (for data)

Part by part: The view
● The view

– Represents data
– Creates the user interface

Part by part: The controller
● The controller

– Tells the model what to do based on the requests
from the view

– Does not handle data logic

Positive effects
● When business logic is separated form the user

interface
– Components are more easily reusable
– Components can be made, deployed, maintained

and tested independently
● -> TDD, semantic URLs

Negative effects
● Not suitable for small applications (still good for

planning)
● High complexity
● Inefficiency of data access in view

Planning tool
● Thinking about programming and organize your files

– -> translate your ideas into code
● Interaction with other code gets easier
● Returning to the code gets easier as well
● We will certainly return to this later (as some of the

pointers indicate)

Alternative approaches
● Microservices / RESTful APIs (no view just

JSON data transformed)
● Middleware, mediator, and command patterns

Transformation
● After picking up MVC, at least as a planning

tool, we return to the transformation part
– How do I transform?
– What do I transform to?
– Let us start with the latter

What do I transform to?
● Pick a purpose

– to view:
● on screen, html
● for reading offline, ePub, PDF

– data for components:
● JSON
● Other XML

– other uses:
● Suitable format

– transformation from

What are the data needs for each
use of transformed data?

● this guides the resulting format and what features
are in there
– Sometimes you need further information for a use than

what is available in your data
● can it be computed from your data?
● Do you need to add other sources?
● Can annotations be added to current sources to address the

need?

How do I transform?
● extract from data sources (resources)
● combine several sources
● compute (into runtime data or on the fly?)
● pick standard formats (yes, really, we will come back to this)

– enables possible reuse
– gives better understanding by more people
– certainly make it more sustainable

How do I transform?
● With what do I transform?

– Source is text or encoded text: Xquery, XSLT, explicit
API calls to services

– source is not (written) text:
● if images of text: OCR and encode minimally to treat it as

similar text sources
● If images, audio, video: convert from surce to runtime/use

formats

Testing
● To be safe you should make tests for the

transformations too

Continuation follows ...
● Hopefully some food for thought on what to

think about for your own project and the
resources

	Sida 1
	Sida 2
	Sida 3
	Sida 4
	Sida 5
	Sida 6
	Sida 7
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Sida 16
	Sida 17
	Sida 18
	Sida 19
	Sida 1
	Sida 2
	Sida 3
	Sida 4
	Sida 5
	Sida 6
	Sida 7
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Sida 16
	Sida 17
	Sida 18
	Sida 19

