
File management
and command line basics

Getting to know your machine

NEH Institute “Advanced Digital Editing”
Week 1, day 2

July 12: 2.30pm - 3.30pm

Outcomes

● File system hierarchy, file system hygiene principles

● Bash shell

● Moving around on your machine

● Troubleshooting, looking stuff up

1. File system

File system

● Responsible for managing information on your disk: naming, storing, retrieving

● Multi-level hierarchical structure

○ Information is stored in files which are stored in directories (or folders).

○ Directories can contain other directories.

○ Home directory (Users/<your-username> on Mac, C:\Users\<your-username> on Windows)

functions as a root

● Every file has a unique path that is its location

File system

Show/hide file name extensions

● Mac: Open Finder and select Preferences, click “Advanced”, and check the box next

to “Show all filename extensions”.

● Windows: In any File Explorer window, click on “View” tab, and then “Options” on

the right to open the “Folder Options” window. In the “View” tab, uncheck “Hide

extensions for known file types” box.

Show/hide hidden files

● Mac: Open Finder and hit Cmd+Shift+. Do the same thing to turn off hidden files

● Windows: In the same “Folder Options” window as before, Check “Show hidden files,

folders, and drives”

File system hygiene

File system hygiene

Walt Whitman by Dr. William Reeder, 1891.
Image from the Walt Whitman Archive.

https://whitmanarchive.org/multimedia/zzz.00121.html

File system hygiene

Warren Ellis’ desktop. Still from the documentary This much I know to be true by
Andrew Dominik (2022).

“Messy desktop.” Image used in the Command Line Fundamentals
workshop by David J. Birnbaum, Gabi Keane, and Emma Schwarz.

File naming conventions

● Stay organized, quickly find files

● Human readable

○ Logical, original names that represents the content

○ Be nice to your future self

XKCD, https://xkcd.com/1459.

https://xkcd.com/1459

File naming conventions

From data carpentry.

OR

https://datacarpentry.org/rr-organization1/01-file-naming/index.html

File naming conventions

● Stay organized, quickly find files

● Human readable

○ Represents the content

○ Be nice to your future self

● Machine readable

○ No spaces

○ No punctuation

○ No accented characters

○ Think about capitals vs. lower case

○ Deliberate use of delimiters (- and _)

XKCD, https://xkcd.com/1459.

https://xkcd.com/1459

File naming conventions

● Spaces and punctuation are meaningful on the command line

Long program name

● When trying to describe the location of a file, using a URL, spaces need to be

escaped (Long\ program\ name)

● Spaces are encoded or converted to %20 in file names on the web

Long image name 1 >> Long%20image%20name%201

● Special characters like / ! | $ < > ? * have a function on the command line

2. Shell

What is the shell?

● The shell is a program that runs other programs

● We use the shell to interact with the computer on the command line (CLI ~ GUI)

○ It gives you better control

○ You can pipe together small simple commands to do something complex

○ It works on every platform / OS

● A command is a software that is executed on the CLI and performs an action on the

computer

What is the shell?

Open your shell:

● On Mac: terminal application (or, if you prefer, iTerm)

● On Windows: Git bash

● Prompt (typically $ or %)

The “shell family”:

● Bourne shell (sh)

● csh, tcsh, ksh

● Bourne Again shell (bash)

● The Z shell (zsh)

● …

3. Basic commands

Navigating the file system

Commands

pwd print working directory

ls list directory

cd change directory

less view contents of a file on the CLI

whoami returns your username

/ file system root

~ user home directory

Navigating the file system

Commands and parameters (“flags”)

cd ~ change into your home directory

cd .. move one level up

cd ../.. move two levels up (etc)

cd [folder] change to folder

$ cd Documents

Also: tap completion!

Navigating the file system

Commands and parameters (“flags”)

ls -a list directory including hidden files

ls -l enhanced file information (date and time, owner and group, permissions)

ls -G show colored output

ls -d */ list only directories

ls -F decorate file names according to type

File permissions

$ ls -l

drwxr-xr-x 6 ellibleeker staff 192B Jul 5 09:01 resources/

From left to right:

- File type (d for directory, - for file)
- Permissions (read, write, execute, no permission set)
- Hard link count
- User owner
- Group owner
- File size
- Date / time stamp
- Name

Source:Linux handbook

https://linuxhandbook.com/linux-file-permissions/

Navigating the file system

Combine flags:

ls -G colorize output

ls -a include hidden files

ls -F decorate file names according to filetype

ls -1 print output in one column

>>> $ ls -GaF1

Modifying the file system

touch create a new file (Mac)

$ touch myfile.txt

ni create a new file (Git Bash)

$ ni myfile.txt

open opens a file in your default text editor (Mac)

$ open myfile.txt

nano opens a file in the nano text editor

$ nano myfile.txt

Modifying the filesystem

mkdir create a new directory

$ mkdir myfolder

cp copy a file

$ cp file1.txt copy-of-file1.txt

mv rename/move a file to a new location

$ mv old-filename.txt new-filename.txt

$ mv file1.txt new-directory/file1.txt

$ mv file1.txt new-directory/new-filename.txt

Modifying the file system

Removing files on the CLI should be done with caution!

● There is no “undo remove”

● There is no bin from which you can retrieve your files

➢ Once it’s gone, it’s gone.

Safety measures

● Always check in which directory you are before you

remove something

● Have bash ask you for a confirmation

Modifying the file system

rm remove a file

$ rm copy-of-file1.txt

rm -r remove directory

$ rm -r myfolder

rm -i check before removing

Useful commands

man (on Mac) gives you the command “manual”

$ man rm

[CommandName] --help (on Windows) gives you more info on a command

$ rm --help

cat concatenate file and print to standard output

$ cat myfile2.txt

Useful commands

history show history of the last ten commands

clear clears your CL interface (scroll up, it’s all still there!)

!! repeat last command

[arrow up/down] run through the history of your commands

ctrl + C stops any running process on your CL

(More useful commands later this week)

Chaining commands together

echo prints some text to the screen (standard output

$ echo hello world

$ echo hello world

echo ~ prints home dir

echo "<text>" preserves the text

$ echo "~"

Chaining commands together

> redirect output to a new file

$ echo hello world > myfile2.txt

>> redirects output to an existing file, appending to the end

$ echo goodbye you >> myfile2.txt

Looking stuff up

● Man pages: $ man [CommandName] (on Mac)

● $ [CommandName] --help (on Git Bash)

● Explain shell. Will dissect any shell command you type in and display help text for each piece.

Especially useful if on Windows Git Bash and the man page doesn’t work

● TLDR pages, to explain man pages with practical examples: https://tldr.sh/

● Software carpentry overview of shell commands:

https://swcarpentry.github.io/shell-novice/reference.html

● Command line fundamentals course of David J. Birnbaum, Gabi Keane, and Emma Schwarz:

https://github.com/djbpitt/command-line-fundamentals

https://explainshell.com/
https://tldr.sh/
https://swcarpentry.github.io/shell-novice/reference.html
https://github.com/djbpitt/command-line-fundamentals

3. Exercises

Your turn!

● Navigate (on your CLI) to the pr-app folder you created this morning

● Explore the folder with commands like ls and cd , moving up and down the file

directory structure

● Experiment with different flags of ls

Your turn!

● Create a new directory in the pr-app folder (using the mkdir command)

● Navigate into the directory (using the cd command)

● Create a new file (using the touch command)

● Add some text to the file (with echo command and the > redirect)

● Check if you succeeded (with cat)

Your turn!

● Check the content of the file (with the cat or the ls command)

● Rename the file (with the mv command, inside the same directory)

● Check the result with ls

● Move the file (with the mv command, to a new directory)

● Change into that directory (with cd)

● Remove the file (with the rm -i command, be careful!)

● Check the result with ls

References

● Explain shell: https://explainshell.com/. Will dissect any shell command you type in
and display help text for each piece. Especially useful if on Windows Git Bash and the
man page doesn’t work;

● TLDR pages, to explain man pages with practical examples: https://tldr.sh/;
● Software carpentry, basic shell commands:

https://swcarpentry.github.io/shell-novice/reference.html;
● Course on command line by David J. Birnbaum, Gabi Keane, Emma Schwarz:

https://github.com/djbpitt/command-line-fundamentals;
● Matthew Panzarino. 2012. “How Pixar’s Toy Story 2 was deleted twice, once by

technology and again for its own good”, The Next Web, May 21, 2012. Online.
● Linux handbook: https://linuxhandbook.com/

https://explainshell.com/
https://tldr.sh/
https://swcarpentry.github.io/shell-novice/reference.html
https://github.com/djbpitt/command-line-fundamentals
https://thenextweb.com/news/how-pixars-toy-story-2-was-deleted-twice-once-by-technology-and-again-for-its-own-good
https://linuxhandbook.com/

